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Abstract 

The principles of regular (invariable or stochastic) conjunction, of retarded 
action, determination, and causality, are stated exactly and analyzed. To this 
end, the concepts of system, property, state, and event, as well as those of 
conjunction (of events and of properties) are first elucidated. Four types of 
determination are distinguished and analyzed and it is shown that only one 
of them qualifies as a causal nexus, the others being deterministic (ir~ the large 
sense) but noncausal. The overall conclusion is that, while the principles of 
regular conjunction, retarded action and determination are both distinct and 
universal, the causal principle is just a restricted version of the principle of 
determinacy. 

Scientific research proceeds on a n u m b e r  of  me taphys i ca l  hypo-  
theses,  such as t h a t  no th ing  s tands  isolated, and  t h a t  the  present  
unfolds  i tself  lawful ly into the  future .  These hypotheses  have  been 
fo rmu la t ed  and  examined  m a n y  t imes  in the  course of  the  last  two  
and  a ha l f  mil lenia b u t  t h e y  are in need  of  fu r the r  clarification. I n  
par t icular ,  we should know more  accura te ly  wha t  it means  to say  t h a t  
two events  or two proper t ies  are conjoined, t h a t  the  present  deter-  
mines the  future ,  and  t h a t  one even t  de termines  or in pa r t i cu la r  causes 
ano the r  event .  The  a im of this pape r  is to a t t e m p t  a clarification of 
these ideas along a line different f rom, though  consis tent  with,  some 
previous  work  on the  p rob lem (Bunge, 1959, 1961, 1962, 1963). I t  is 
hoped  t h a t  the  upsho t  will be a nearer  charac ter iza t ion  of  the  onto- 
logical categories of  conjunct ion,  succession, de terminat ion ,  and  
causat ion.  

1. Preliminaries: System, Property, Event 

Since we shall deal wi th  cer ta in  relat ions among  proper t ies  of  
sys tems  and  among  events ,  i t  will be convenient  to  s t a r t  b y  elucidat ing 
these te rms .  

B y  a system we shall unde r s t and  a concrete object ,  whe ther  physical ,  
biological, or cultural ,  act ing as a uni t  in some respect .  A field, an  
organism and a c o m m u n i t y  are systems.  Fo r  the sake of s impl ic i ty  we 
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shall restrict our at tention to nonquantal  systems. To indicate tha t  an 
individual a is a system of the kind 27 we shall write : a ~ 27. 

We assume that  every system has a finite number of properties, 
known or unknown. We shall count relations and interactions among 
the properties and shall call P(Z) = (P1,P2,...,P~} the set of properties 
characterizing the class Z. We further assume tha t  every property Pi 
can be represented by a function or an operatorF~, and write '_F i __~ Pi', 
to indicate tha t  F~ represents Pi. More precisely, we assume that  every 
kind 2: of system is exhaustively characterized by a finite number n of 
real valued functions (or hermitian operators) F i on Z. In  short, for 
every i between 1 and n, and every 2:, i fPi  ~ P(Z) ,  then there exists an 
Fi:  27 -~ R such that  F i _~ P i . t  Furthermore,  it will be assumed that  
every one of these functions or operators is basic in the sense that  it 
cannot be defined in terms of other members of the set P(27), even 
though it will be related to some of them. (Recall the distinction 
between an equation and a definition.) To this end, the amplitude and 
the phase of a complex-valued function shall count as two independent 
functions, and every component of a tensor shall count as one function. 
Example:  all gaseous bodies of a given mass and a given chemical 
species are, macroscopically and ideally, characterized by three 
functions on the set 27 of all such bodies : the volume V, the pressure P,  
and the temperature T. All other macroproperties of an arbitrary 
gaseous body of the kind 27 will be represented by functions of these 
three basic functions. 

A condition or state s(a) of a system of a given (non-quantal) kind 
27 will be represented by an ordered n-tuple of values (or eigenvalues) 
of all the n basic functions (or operators) F i tha t  characterize 27. Two 
states of a are different if the corresponding n-tuples differ in at least 
one of the coordinates. Example : every state of a gaseous body a of a 
given mass and chemical species is represented by an ordered triple of 
volume, pressure and temperature values of ~:s(a) --~ (V(a), P(a), 
T(a)}. Likewise, the state of a person could in principle be represented 
by the values of a huge number of variables such as weight, sugar level, 
visual acuity, occupation and income. 

The set of all accessible values of the basic functions of a system 
constitutes the state space S(a) of a. In  the case of the ideal gas, the 
state space is the cartesian product  of the range of the three thermo- 
dynamic coordinates V,P,T.  Although every state is assumed to be 
representable by an n-tuple of values, the converse is not true : not 

t For the semantic relation --~ of representing or modeling, as well as for the 
above analysis of properties, see Bunge, M. (1967). Foundations of Physics, 
pp. 20 ffand 30 ft. respectively. Springer-Verlag, New York. 
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every point of the cartesian space R n represents a possible state. 
Therefore the state space is a subspace of the cartesian space R ~'. 

An event involving some system a e Z, whether simple or complex, is 
any  change in the state of a. More precisely, an event  e(a) involving the 
system a will be represented by  an ordered pair of states of a, i.e. 
e(a) ~ @(a), s'(a)>, where s(a) and s'(~) are different points in the state 
space S(~). In  short, every event  m a y  be regarded as an oriented 
segment in this space. The identical t ransformat ion s(a) -> s(a) is of 
course a nonevent  or a null event:  an enduring condition is not  a 
happening. Two events are different only when the corresponding 
couples differ in at  least one of the coordinates. Unless t ime occurs 
among the basic functions characterizing the kind of system, two 
events involving an individual of the kind Zwil l  be identical if  they  are 
represented by the same states couple irrespective of the times of 
occurrence. The set of possible events involving a system a m a y  be 
called the event space of a. Since not  every ordered pair of points in the 
state space is physically possible (certain transit ions between states 
being 'forbidden'),  the event  space is a subspace of the cartesian 
product  of the state space by  itself: E(a) ~_ S2(a). 

Every  space of events can be analyzed into a number  of subspaces, 
each of which represents all the possible events of a kind. Thus 
tempera ture  changes form a class of events;  but, by  virtue of the 
functional  relations between temperature  and several other variables, 
there are hardly  any  pure temperature  changes. The set of events 
involving a system a and characterized by changes in every member 
of a subset A(Z) _~ P(Z)  of the basic properties of Z m a y  be called a 
set of events of the kind E~. Clearly, every individual scientific 
invest igat ion handles only one such event  subspaces. 

We can now examine certain basic relations among properties and 
among events. We shall s tar t  with the latter,  being simpler. 

2. Conjunction of Events 

Let  us first analyze the idea t ha t  two events occur jointly, whether  
at  the same place or t ime or not, and whether  invariably or in a fixed 
percentage of cases. 

Let  e(a) and e'(~)' be two events involving the (not necessarily 
different) systems ~ and a' respectively. The s ta tement  t ha t  e(a) 
occurs can be symbolized thus  : e(a) ~ E(a), or e e E for short ; corre- 
spondingly, the assertion tha t  e'(a') happens can be abbreviated to:  
e' e E' .  The joint occurrence of two events is a th i rd  event. The 
event  consisting in the joint  occurrence of the events e and e' will be 
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designated by c ~ e'. The statement that  such a compound eventis the 
case may be formalized by saying that  e N e' is a point in the (direct 
product) space E | E', i.e., that  e ~ e' e E @ E'. (Caution: this 
product space does not constitute a lattice, except on the Stoic 
assumption that  everything hangs together. The space of joint 
events, included in E @ E', does constitute a lattice.) 

Two events may be said to be invariably conjoined if, whenever one 
of them happens, the other occurs as well. Briefly, 

Dr. 1: 
J(e,e') =dfe E E v  e' e E '  ---> e f~ e' EE  | E '  

By assuming that  the conjunction of events is commutative, it can be 
seen that  the relation J of invariable conjunction is an equivalence 
relation: every event is trivially conjoined with itself, and the relation 
is also symmetric and transitive. I f  this analysis is correct, it in- 
validates Hume's analysis of causation as invariable conjunction of 
events, for the causal relation, though transitive, is nonreflexive and 
antisymmetric. 

Consider now two classes of events involving systems of any k ind- -  
e.g. the class of thunderbolts and the class of shudders. Two classes 
E a and E~, of events will be said to be invariably conjoined only when 
every member of E a has at least one match in E A, and conversely, so 
that  every pair (e, e') e Ea X E2, is invariably conjoined : 

Dr. 2: 

J(EA, EA') =df (e) (3 e') [e e E A & e' ~ E~r --~ 

J(e, e')] & (e') (3 e) [e' e E A, & c e E,i ~ J(e, e')] 

This concept of invariable conjunction of classes of events allows 
us to analyze Hume's principle of invariable conjunction. This hypo- 
thesis may be construed as asserting that,  for every class E d of events, 
there exists some other class EA, % E4 such that  E2 and E A, are 
invariably conjoined: 

( A ) ( E ~ r  CO&J(EA,EA,)]  (2.1) 

A somewhat more refined idea of regular conjunction of events is the 
one of stochastic (probabilistic) conjunction. Two events e and e' will 
be said to be stochastically conjoined if their joint probability is not 
multiplicative : 

Dr. 3: 
SJ(e, e')=df Pr(e  (7 e') % Pr(e).Pr(e') 
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Two classes E4 and E~. of events will be said to be stochastically 
conjoined only when every pair (e,e'} ~ EA X EA, is stochastically 
conjoined: 

Df.~: 
SJ(E~, E ~,) =df (e) (3 e') [e e E A & e' ~ E A, ---> 

SJ(e, e')] & (e') (3 e) [e' ~ E A & e E E.4 --~ SJ(e, e')] 

In the absence of stochastic theories (e.g. statistical mechanics 
and genetics), observed relative frequencies may be used to ascertain 
whether two events, or two classes of events, are stochastically con- 
joined. But in this case, i.e. when no theoretical analysis of the 
possible random mechanism is at hand, one must be overcautious in 
concluding that  two events, or two classes of events, are or fail to be 
stochastically eonjoined. Even a coarse model assuming the stochastic 
independence of the events concerned will be better than nothing, for it 
will enable us to estimate the strength of the stochastic connection as 
measured by the difference between the observed frequency of the 
joint events and the computed value Pr(e). Pr(e'). 

We now state what may be called the principle of stochastic con- 
junction: For every class E A of events there exists another class of 
events Ea, r EA such that  E~ and E~, are stochastically conjoined: 

(A)(E~ r ~ --> (3A')[A r A '  & E~, r ~ & SJ(E~,E~,)]} (2.2) 

Clearly, this principle subsumes the principle of invariable conjunction. 
Indeed, the latter follows in the particular case in which Pr(e 7) e') = 
Pr(e) = Pr(e'), for then the conditional probabilities of e given e', and 
of e' given e, equal unity. 

Finally, we shall say that  two classes of events are regularly con- 
joined only when they are either invariably or stochastically con- 
joined. This enables us to state the general principle of regular 
conjunction: Given any kind of events, there exists another class of 
events, different from the former, such that  the two classes are 
regularly conjoined. 

So far, nothing has been said either about the time relations among 
events or about the way they are connected. Were it not a regular 
(invariable or stochastic) conjunction, one might take it for accidental. 
But of course accidental conjunctions are irregular : they do not even 
have a constant probability although they may exhibit a high fre- 
quency in the short run. Anyhow, theoretical science has little use 
for whole events, so we had better move on to the conjunction of 
properties. 

2O 
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3. Conjunction of Properties 

Let 27 be a class of systems every one of which is treated as a unit 
even though it may be highly complex. Next let F1 and F2 be two 
functions on Z, representing respectively the properties P1 and P2 of 
any given individual a e 27, and assume as before that  those functions 
are real valued. In short, 

FI:z~---~X, F2:Z--~ Y, w i t h F ~ P ~ ,  i =  1,2, X, Y ___ R 

For example, P~ could be the bulk and P2 the thermal agitation of a 
body. Correspondingly, x e X would be a volume value and y e Y a 
temperature value of that  body. 

We shall say that  the properties P1 and P2 are concomitant, or 
simply conjoined, only when the values x ofF1 and y ofF2 for a given a 
are functionally related to each other; i.e., P1 and P2 are simply 
conjoined if and only if there exists a third function G such that,  for 
any fixed ~ ~ Z, y = G(x). Briefly, 

Df. 5: 

I f  

FI~PI&tz2~P2&FI:Z- - ->X&F2:X- - -~  Y & X , Y  ~_ R 

then: 

C(P1,P2) =df (3 G)(G:X ~ Y) 

Example : the mass and the energy of a body are simply conjoined. 
By virtue of this functional relationship, the determination (in the 
epistemological sense) of the one enables us to determine (compute) 
the other. That is, given (= known or hypothesized) a value x ofF1, the 
function G enables us to compute the corresponding value y = G(x) of 
F 2. I t  is therefore usually said that  P1 determines P2. But this expres- 
sion is misleading, for a functional dependence of F2 on F1 is not 
sufficient to conclude that  P~ is ontologically prior to P~. So much so, 
that  in most cases the function G has an inverse at least in some 
domain, so that  x = G-l(y). In such cases P1 is as much determined by 
P2 as conversely. This determination is therefore a purely epistemie 
one, in the sense that  it consists in an inference of a piece of information 
from another: it need have no ontological partner other than cou- 
junction. 

Things change when the conjoined properties belong to different 
levels of organization, for example the atomic and the molecular 
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ones.~ In most cases, i f P  1 belongs to a level of organization lower than 
P2, then: if P1 and P2 are conjoined, then P1 determines P2 but  not 
conversely. Thus, genetic characteristics determine most phenotypical 
characters. But  in psychology and sociology we find also many cases in 
which the higher determines the lower--as when a team of engineers, 
technicians and workers design and build a machine. In any case, if 
two properties belonging to different levels of organization are 
regularly conjoined, then one of them may determine the other in the 
sense that  the determinant could exist without the determined but  not 
conversely. 

In most cases more than two properties are conjoined, whence the 
corresponding functional relations will involve more than two 
variables. I f  these functional relations (the G's of Df. 5) belong to a 
theoretical system (rather than being stray) and are well corroborated, 
they will deserve being called law statements. $ Otherwise they will be 
hypotheses lacking theoretical and/or empirical support. 

Two or more properties may be conjoined in yet another fashion, 
namely stochastically. This will be the case when the occurrence of a 
value x E X of F~ determines a definite probability that  the value 
y e Y ofF2  lies on a certain interval [Yl,Y2] rather than determining 
uniquely the value y itself. We shall say that  the properties represented 
by  F1 and F2 are stochastically conjoined only when the values of F1 
are functionally related to the probabilities of the values of F2, i.e. if 
there exists a third function G such that Pr(y ~ [Yl, Y2]) = G(x), where 
the function Pr satisfies the postulates of the probability calculus. 
Briefly, 

Df. 6: 

I f  

F I ~ P I & F e ~ - P e & F I : X - ~ X & F 2 : 2 - ~  Y & X , Y  ~ R 

then: 
SC(P1,P2) =of (3 G) [G: X -> Pr(Y)] 

In general, either for simple conjunction or for stochastic con- 
junction, G will be a rather complicated function of several variables 
in addition to the system variable. In the simplest case, the values of 

t Cf. Bunge, M. (1963). The Myth of Simplicity, Chapter 3. Prentice-Hall, 
Engelwood Cliffs, N.J. And On the Connections Among Levels. Proceedings 
XI I th  International Congress of Philosophy, VI, 63. Sansoni, Florence (1960). 

$ For a justification of this definition of the concept of law statement, see 
Bunge, M. (1967). Scientific Research, I, Chapter 6. Springer-Verlag, Berl in-  
Heidelberg-New York. 
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F1 and F2 will depend not only on the system concerned but  also on 
some parameter t, often interpreted as the time. In such a case the 
conjunction of properties will take either of these forms: 

7~t 
y(t) = G/x(,)] (3.1) 
Pr(y(t) e [Yl, Y2]) = 

In particular, the functional dependence may take the integral form 

t 7"~t 
= f dr .  t) H[x(r)] (3.2) 

~" ~to to 

The set (x(r)lt o ~ t }  is of course the history of the system as 
regards its property P1- 

Thus far, the functions involved in simple and in stochastic con- 
junction represent correlated properties of a system of some kind. 
There has been no question of determination of one property by  
another (except in an epistemologieal sense) but  only of the hanging 
together (invariably or stochastically) of different traits of a given 
system. Clearly, no causal relation is possible among properties of a 
single system. 

The hypothesis that  any given trait  of a system is concomitant with 
at least another trait  of it, is a metaphysical principle underlying 
scientific research. Let us state it more precisely. The principle of 
the regular conjunction of properties states that  every function 
('variable') characterizing any system is conjoined with at least one 
other function of the same system, either invariably (simple con- 
junction) or in a fixed percentage of cases (stochastically). In obvious 
symbols, 

(~)(i){(T ~ 27 & 1 ~< i < n & F i ~ Pi --> (3.3) 

(3j)[1 4 j  <~ n & j r i & Fj _~ Pj & (C(P~,Pj) v SC(Pi, Pj))]} 

I f  we did not trust this metaphysical principle we would hardly care to 
look for relations among properties; and if this search were fruitless 
we would not believe the principle. This remark may be expanded 
into this recta-metaphysical principle: A system of metaphysics is 
adequate to the extent to which its principles (hypotheses) promote 
the search for t ruth by  the method of science.~ 

"~ F o r  some of the  philosophical  principles under ly ing  scientific research, see 
Bunge,  M. (1967). Scientific Research, I,  Chapter  5, and I I ,  Chapter  15. Springer-  
Verlag, B e r l i n - H e i d e l b e r g - N e w  York.  And  Foundations of Physics, pp. 83-88. 
Springer-Verlag,  New Y o r k  (1967). 
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4. Determination of the Present by the Past 

Consider the formulas (3. l) and (3.2) of the previous section. I f  the 
parameter t is interpreted as the (local) time and the condition to ~< t is 
added, these formulas say that  the value of F2 at time t - -or  the 
probabili ty that  at time t that  values lies on a given bracket-- is  the 
outcome of the P~-history of the system between to and t. (Instant- 
aneous action is obtained by  choosing H[x(~)] = 3(~ - t) in the second 
formula.) Whenever the dependence of P2 on P1 is nonanticipatory, or 
retarded, as in this case, one says that  the princ@le of antecedence, or 
retarded action, is satisfied. 

Formula (3.1) supplies a general formulation of this principle 
provided t be interpreted as the local time : 

Pr(y(t) e [Yl, Y2]) =- 

(In the case of an organism, the value of G will be zero between -co and 
the instant its birth starts.) In particular, the dependence of the 
present values of P2 on the past values of P1 may take on the forms 

t y(t) 
Pr(y(t) E [Yl, Y2])} = j ~  d-rT(~',t)H[x(,)] (4.2) 

The generalization of this formula to spacetime is immediate but  we do 
not need it for our analysis. 

In contemporary physics, particularly in quantum field theory and 
in scattering matrix theory, certain specific forms of the retarded 
action (or antecedence) principle are called causality relations or 
conditions. Thus it is said that  the fields must satisfy the causality 
condition or that  causality implies relativistic invariance. Yet all 
such 'causality' conditions state is that  certain functions are so 
conjoined (in either of the senses of the previous section) that  one of 
them takes its values earlier than the other. Hence those assumptions, 
misnamed 'causality' conditions, are just examples of what we have 
called the retarded action principle. So much so that  they apply not 
only to input-output  relations, some of which are genuinely causal, 
but  also to certain pairs of functions that  mirror traits of a single 
system--hence to situations in which there are no input and output  
terminals. Indeed, the formulas (4.1) and (4.2) may describe the 
unfolding of properties, hence of states, of an isolated system as an 
outcome of its inner changes. From an ontological point of view it 
will be a question of causal determination provided the behavior 
of a system under the action of another system (e.g. the milieu) is 
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concerned, and provided certain additional conditions are satisfied (see 
Sections 6 and 7). 

All physical systems seem to satisfy the retarded action principle. 
(The fact that  classical electrodynamics fails to satisfy it, as it talks 
about  the preacceleration an electron would enjoy before meeting an 
electromagnetic wave, is probably more of a source of embarrassment 
for that  theory than it is for the electron.) Organisms, on the other 
hand, appear to be free from the retarded action stricture. Thus the 
bird that  builds its nest would appear to have its present state 
determined by  the future values of certain inputs. However, this is 
illusory: what determines the present behavior of the animal is a 
complex of conditions resulting from a long evolutionary process 
part ly recorded in its genetic equipment. Likewise, what determines 
our rejoicing in anticipating a friendly smile is our present represent- 
ation of that  future event. There may well be teleology--the striving 
towards goals--on the higher integrative levels, but  not as an action 
of the still nonexistent future on the present. In particular, the fore- 
knowledge claimed by parapsychology is as impossible as magic : it is 
inconsistent with physics and biology--which abide by  the principle of 
antecedence--and this is enough to write it off. 

When a hypothesis is so general and becomes so deeply enmeshed in 
the whole fabric of science, as is the case with the retarded action 
principle, it attains the status of a metaphysical regulative principle 
employed in theory construction as well as in weeding out false 
conjectures and pseudodata.$ Being so powerful, such metaphysical 
principles can become dangerous. But  they may be rendered harmless 
by requiring (a) that  they exhibit their fertility, (b) that  they cohere 
with each other, and (c) that  they be kept under critical scrutiny. 

5. Determination of one Thing by Another 

Heretofore we have treated systems as wholes, analyzing properties 
and events that  keep company. We shall now take up an analysis of 
mu]ticomponent systems. By acting upon one another, the various 
parts of a complex system may determine each other's behavior to 
some extent. 

Let us assume that  every multicomponent system can be analyzed 
into pairs of mutually acting parts. Let a and ~' be two such sub- 
systems, either of the same kind or of different sorts. $ In particular, a' 

t See foo tno te  on p. 212. 
$ For a formalization of the concepts of part, physical addition and physical 

product, see Bunge, IV[. (1967). Foundations of Physics, pp. 108-112. Springer- 
Verlag, New York. 
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m a y  be the tota l  environment  of the system ~ on which our a t ten t ion  
is focused. Examples:  an a tom immersed in a magnetic field, a 
machine and  its environment ,  an organism and its milieu. Our objects 
of s tudy  are then  the system ~ under  scrut iny and the ordered pairs 
@,~'} and @ ' , @  or, more generally, the sets Z, Z X Z' ,  and X' X Z.~ 

Suppose fur ther  t ha t  three functions (or operators ) F1,F2 and Fa 
are given, every one of which mirrors a key proper ty  of ~, @', a}, and 
@, a'} respectively : F i =~ Pi, i = 1, 2, 3. In  particular,  F 1 and F s m a y  
represent the same proper ty--e .g ,  a force, or a light intensity.  In  the 
part icular  ease of a system and its surrounding, P1 is often called the 
input or stimulus of a' on a, P e a  state variable of ~, and Pa the output or 
response of ~ on ~'. I f  the system a is free or nearly so (no input), 
either a' does not  act  upon it or it  is nonexis tent  (in which case a' will 
be the null individual  of the kind X'). Finally,  let us agree to over- 
simplify our analysis to the unlikely ease in which only triples of 
properties, one per system, need be considered at  a time. This is of 
course a pretence in the interest  of perspicuity. 

Our functions Fi(i = 1,2,3) are not  exact ly those occurring in 
Section 3. Indeed,  two system variables, ~ and ~', and the t ime t will 
now occur. Thus x e X will be the value of the input  P1 at  @',a,t}, 
while y c Y will be the value of the state proper ty  P2 at  @, t}, and 
z e Z the value of the ou tpu t  P3 at  @, a', t}. In  other words, our basic 
functions are now 

with 

F I : X ' X Z X T - ~ X ,  Fe:ZXT- -~  Y, 

F ~ : X X Z ' X T - - > Z  

F~ ~=P~, ( i = ] , 2 , 3 ,  X , Y , Z , T  ~_ R) 

(5.1) 

where T is the set of durations.  I f  P1, P2 and Ps are conjoined, the in- 
puts  will be mapped into the outputs,  either in a fixed way ('deter- 
ministically')  or stochastically, via a fourth  function G. 

The eases of practical interest  are those of the action of ~' on 
(dependence of P3 on P1 and P2) and ~ -  ~' interaction (inter- 
dependence of P1, P2 and Ps). We assume tha t  in both eases the 
principle of re tarded action (Section 4) is satisfied, i.e. t ha t  the ou tpu t  
is later t han  or at  most  simultaneous with the input.  With  this 
hypothesis,  the state F2(~, t) of the system at an arb i t ra ry  ins tant  t is a 

t Orde red  n - tup le s  need  no t  be  c o n s t r u e d  as sets  of sets  (Wiene r -Kura towsk i )  
b u t  m a y  be  r e g a r d e d  as ind iv idua ls ,  as does S. M a c L a n e  in his  homogeneous  set  
t h e o r y  ( lecture  a t  McGill  U n i ve r s i t y ,  18 M a r c h  1968). 
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function, or ra ther  a functional,  of  all the states prior to t, as well as of  
the  input  his tory during the interval  [to, t] : 

~ ' ~ t  

y =/~2(a, t) = S[F~(a, r ) ,F l (a ' ,  a, 7), 7] (5.2) 
~'=to 

E v e r y  equat ion of this form may  be called a state equation of the 
sys tem ~ in the  milieu a'. (Example : a linear sys tem wi thout  memory :  
dy/dt = A (t). x(t) § JB(t). y(t).) In  the absence of inputs,  the sys tem will 
be in a given s tate  at  every  instant ,  and its s tates will unfold according 
to its s ta te  equat ion.  Consequent ly (5.2) includes the case of  free 
sys tems (null environment)  evolving in a spontaneous (noncausal) 
way.  

As regards the  inpu t -ou tpu t  equations,  we have the following 
possibilities, t 

l(a). Simple Action." 
~'=t 

2'3(a ,a ' , t  ) = G[FI(a',a,t),F2(a, 7),7], (t>to) (5.3) 
q" =tO 

l(b). Stochastic Action." 

Pr(Fs(a,a',t ) e [zl, z~]) = G[Fl(a',a,t),Fe(a, 7),'r], (t>to) (5.4) 
T = t o  

2(a). Simple Interaction." 
T=t  

Fs(a,  a', t) = G[FI(a' ,  a, T),Fe(a, 7), 7] 
7 : t o  

T = t  
Fl(a', ~, t) = H[F3(a, ~', T),F2(a, 7), 7] 

T = t o  

(t > to) (5.5) 

2(b ). Stochastic Interaction: 

Pr(F3(~, ~', t) ~ [zl, z2]) = G[FI(~', ~, 7), F2(~, 7), 7] 
~" = t o  

~ - = t  

Pr(Fl (a ' ,  a, t) e [Xx, x2] ) = H[F~(a, a', 7),F2(~, r), r] 
"r = t o  

(t > to) 

(5.6) 

Notice that in all these cases the main system or transducer, far 
from being a passive channel, contributes actively to the transactions. 

t For an axiomatic treatment of cases 1 (a) and 2(a) below, see Athans, M. and 
Falb, P. L. (1966). Optimal Control, Chapter 4. McGraw-Hill, New York. 
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The information-theoretical model, according to which the channel 
adds at most noise, is just a special case of the genera] systems 
theory. 

6. Types of Determination 

In  all four preceding cases the two systems involved are physically 
connected in some respect, this being why the properties concerned 
are conjoined. The converse is not true: conjunction does not imply 
connection, as shown by the case of two synchronous independent 
clocks. The dependence among properties, hence among states and 
consequently among events, is very different from a mere hanging 
together of different traits of a single system, which concerned us in 
Sections 3 and 4. The dependence studied in the last Section may 
rightly be called determination, for it goes beyond an 'external' 
relation such as 'greater than'. 

What  is common to all four kinds of determination discussed above 
is this: on the one hand the inputs are mapped into the outputs 
(lawful connection) and, on the other, the outputs come after the 
corresponding inputs (antecedence or retarded action). The peculiari- 
ties of those kinds of determination are the following. 

l(a). Simple action : P1 and P2 determine Ps. Hence changes in P1 
cause changes in P~. 

l(b). Stochastic aetion : P 1 and Pe determine the probabilities of P~. 
Consequently changes in P1 cause changes in the probabilities of P 8. 

2(a). Simple interaction: P1 and P2 determine P3, and conversely P~ 
and P2 determine P1. Hence changes in P1 cause changes in Pa and 
vice versa. 

2(b ). Stochastic interaction: P1 and P2 determine the probabilities of 
P~ and, conversely, P3 and P2 determine the probabilities of P1. 
Therefore changes in the probabilities of P1 cause changes in the 
probabilities o f P  z and vice versa. 

In all four cases certain properties are determined by other properties 
either simply or stochastically. (Needless to say, in the latter case the 
probabilities in question, or rather the random variables involved, 
are objective physical properties not measures of our ignorance.) 
Correspondingly every change in the degree of some property (i.e. 
every event of a kind) has some effect, of the same or a different kind, 
as the events that  trigger a change in the state of the compound system. 
The four input-output relations studied above fit therefore into 
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determinism lato sensu or neodeterminism, t Indeed, thus weakened 
determinism asserts only: 

(i) that  every thing and every event emerge from preexisting 
conditions in some system (genetic hypothesis or non-magic 
postulate), and 

(ii) that  every property is lawfully conjoined to some other 
properties, either simply or stochastically (lawfulness 
hypothesis or postulate of regular conjunction). 

The term indeterminist to characterize systems or theories contain- 
ing random variables was justified before the birth of stochastic 
physics: it has now become a misnomer for it suggests the denial of 
either or both the above postulates. Chance is increasingly being 
recognized as an objective mode of behavior, even if all variables 
turned out to be basically nonrandom ('hidden' variables). And if this 
behavior satisfies both the principle of antecedence [contained in the 
genetic hypothesis (i)] and stochastic laws, then it is deterministic in 
the large sense. Only that  which comes out of nothing or gets annihi- 
lated, and at the same time satisfies no law, deserves to be called 
indeterminate (or indeterministic), for it is determined by nothing, not 
even by its own past history. I f  anything like this were to exist, it 
would be impregnable to scientific research, which is a methodical 
search for pattern. Since science refuses to acknowledge the existence 
of objects totally and forever adamant to research, it thereby rejects 
indeterminism. Science is now as deterministic as it was in the days of 
Laplace or even Bernard, but not exactly in the same sense, for it has 
discovered types of determination that  were unknown at that  time. 
Whence the need for rejuvenating determinism. I f  metaphysics is to 
keep the pace of science and if it is to be cooperative rather than 
obstructive, every major metaphysical principle must be overhauled 
from time to time. 

7. Causality 

In all four cases envisaged in the last section, initial changes of state 
determine changes in the final state of a compound system (e.g. a 
transducer coupled to its environment). Such events are not merely 
associated or conjoined in the sense of Section 2. In the present 
situation every initial change produces (engenders, brings about) one 

t For an analysis of general determinism, see Bunge, M. (1959). Causality. 
Harvard University Press, Cambridge, Mass. Meridan Books, Cleveland and 
New York (1963). 
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or more final changes. Therefore these events (changes of state) 
deserve being called causes or effects. (On the other hand a system and 
a property do not qualify as causes: only changes can have causal 
efficacy.) 

However the relation between a set of causes and a set of effects need 
not be causal : there are noncausal relations among causes and effects, 
as exemplified by l(b), 2(a) and 2(b) in Sections 5 and 6. Only simple 
action (case l(a)) can qualify for causality: the remaining types of 
determination are far more complex than causal determination. This 
is not a logical or an empirical question but one of terminology: the 
philosophical tradition, which was not born yesterday, does not 
happen to call causation an interaction or a stochastic relation. Never 
mind if some physicists claim that  every differential equation 
expresses a causal nexus, or if on second thought they stipulate that  
only canonical equations qualify, or if they mistake retarded action 
for causation: since there is no tradition and no system behind such 
caprices, we need not abide by them. 

For a relation between two properties to deserve being called 
causal, it must satisfy the following requirements : 

C1: The relation must involve at least two different systems, the 
determiner and the determined ones. The relation between two 
properties of one and the same system is not causal even if they belong 
to different levels of organization of the system. 

C2: The properties and events concerned must be regularly con- 
joined, i.e. they must be associated either simply or stochastically 
(Sections 2 and 3). That is, causes and effects must be lawfully 
related. 

C3: The actions must be retarded; i.e., there is to be nonnegative 
delay between the cause and the effect. 

C4: The output shall effect negligible changes in the determiner: 
the feedback must be unimportant. 

C5: The properties of the determined system shall have negligible 
spontaneous fluctuations: there must not be spontaneous effects. 

Aside from these conditions, causal relations can be of either of these 
types : 

(a) Plurality of causes: a number of different causes may dis- 
junctively (each by itself) produce a given effect ; 

(b) Plurality of effects : anygiven cause may Mternatively produce 
a number of effects ; 

(c) Simple causation: one-to-one reciprocal correspondence 
between causes and effects. 
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E v e r y  one of  these types  of causation is housed in its own version of 
the  so-called principle of causality: 

(a) 'Every event has at least one cause'. 
(b) 'Every event has at least one effect'. 
(c) 'Every event has exactly one cause and every cause has 

exactly one effect.' 

Now, the 'may' occurring in the statements of multiple causation is 
inconsistent with the necessity that the word 'causation' usually 
evokes : where there is leeway there would seem to be a nexus far less 
strict than the causal nexus. Therefore we may wish to restrict the 
latter to simple (one-to-one reciprocal) causation. In other words, in 
its strict sense causation is the relation characterized by the properties 
Cl through C5 above, plus : 

C6: The causes and  the  effects mus t  be re la ted in a one-to-one 
reciprocal  fashion. (The t ransducer  functions G tha t  map  inputs  into 
ou tpu ts  must  be one to one and onto.) 

According to our analysis, the  causal nexus is just  one among four 
different types of determination. In actual fact few if any real systems 
are found to be coupled in a strictly causal way, which is not surprising, 
for the idea of causality is older than modern science. (The idea of 
conjunction seems to be even earlier, both psychogenetically and 
historically.) Every real system is acted on by random stimuli which 
are partly absorbed by it rather than being faithfully mapped into its 
output. Many systems exhibit a spontaneous fluctuation in some 
properties, even in the absence of external stimulation. And all 
systems have some 'life' of their own, in the sense that they can 
change of their own accord, i.e. without an external cause. The idea 
that nothing changes unless acted on by external agents is an Aristo- 
telian tenet. 

For example, the sensory response R(t) of an organism in a certain 
respect and at time t is possibly constituted by (a) the value of a 
functional of the stimuli S conjoined with R that have acted on the 
organism during its history, (b) the state variables lumped in the 
symbol 'y', and (c) a spontaneous response term U(x,t), where 'x' 
summarizes  cer ta in  inner variables (e.g., a t  the neural  level): 

z = t  x = b  

R(t) = GiS(r),y(~-),r] + U(x,t) 
T - - t o  X = a  

In  this ease it is clear t ha t  the causal range of this law is the subset of 
ordered  pairs ( input ,  ou tpu t}  for which I U[ < R. Bu t  in o ther  cases 
there  will be a response wi thout  a stimulus, and in still o ther  cases the 
system concerned will be equipped with a shock-absorbing mechanism, 
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SO that  its transducer function G will map every input, within bounds, 
into zero. In all such cases the laws concerned will have a narrow or 
even a vanishing causal range: they will be altogether noneausal. 
Which shows that  the popular identities 'Lawfulness = Causality' and 
'Causality = Determinism' are mistaken. 

8. Closing Remarks 

We have analyzed two main kinds of physical relation: conjunction 
and determination. Conjunction or togetherness can be of events or of 
properties. Determination can be of the present by the past, or of one 
level by another, or of one thing by another. In every case objective 
relations are supposed to be at stake. 

Causation has turned out to be a very special kind of determination 
and, moreover, a nexus that  is far from being universal. Therefore any 
failures of causality do not count as refuters of determinism late sensu, 
i.e. lawfulness conjoined with nonmagic. Taken in this sense, deter- 
minism is indispensable to scientific research and it is confirmed by 
every success of the latter. Moreover, unlike scientific hypotheses the 
metaphysical hypothesis of determinism late sensu is irrefutable for, 
if anything should look lawless or seem to come out of the blue or go 
into the blue, we would ask for, and be granted, all the time necessary 
to refute such an impression. 

In brief, the principles of regular conjunction or lawfulness (whether 
simple or stochastic), and the genetic principle (which subsumes the 
principle of antecedence) are neither laboratory results nor meta- 
physical illusions: they are no less than presuppositions of scientific 
research. They amount to the hypothesis that,  no matter how chaotic 
an arbitrarily chosen set of events may be, the world as a whole is 
basically ordered and self-regenerating. As to the causal principle, 
even though it constitutes a very special form of the principle of 
determinism, it is part  of the philosophic engine of scientific research. 
Every time we proclaim its universal extension we err. But every time 
we adopt it as a working hypothesis and as holding to a first approxi- 
mation, we find something--often a noneausal relation satisfying a 
richer type of determination. 
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